quinta-feira, 23 de junho de 2011

Sustentação

Um avião alça vôo devido à reações aerodinâmicas que acontecem quando ar passa em alta velocidade pela asa. Quando isto acontece, ele é forçado a passar por baixo e por cima desta ao mesmo tempo. O comprimento da asa é maior na parte superior graças a uma curvatura e, em razão disto, o ar em velocidade não possui pressão suficiente para retornar ao perfil desta curvatura, gerando uma zona de baixa pressão na parte superior posterior da asa. Estando a pressão na parte inferior bem maior, em razão desta face não possuir um perfil curvado, mas mais próximo de uma reta, a asa se vale da diferença de impacto gasoso do ar atmosférico (maior em baixo, menor em cima) para adquirir sustentação. Algumas explicações invocam uma interpretação errada a partir do Princípio de Bernoulli, afirmando que o fluxo de ar na parte de cima de uma asa é mais rápido que na parte de baixo. A verdade é que ambos os fluxos possuem velocidades praticamente iguais, porém com direções diferentes. Ensaios exaustivamente repetidos mostram que uma molécula de ar que flui na parte inferior de uma asa a percorre muito mais rápido que uma mesma molécula na parte superior, obviamente pelo fato lógico de se deslocar numa trajetória mais direta e não curva, como acontece na superfície superior. Embora muito presente em quase todas as explicações sobre aerodinâmica, a teoria do ar mais rápido em cima da asa é uma explicação errada e ilógica, pois não há fonte energética que acelere o ar acima de uma asa. Trata-se apenas de uma questão de perfil de asa e aerodinâmica. É claro que o efeito do impacto das moléculas de ar de forma mais drástica na parte inferior da asa permite que esta, livre e em suas condições normais, tenda sempre à subir, nunca a descer.

Os aviões necessitam de uma velocidade elevada para que a diferença entre a pressão do ar sob e sobre a asa seja suficiente para a sustentação da aeronave. Devido a essas altas velocidades, um avião precisa percorrer uma certa distância em solo antes de alcançar a velocidade suficiente para a decolagem, o que justifica a necessidade de uma pista de decolagem em terreno longo e plano para a atingir. Para aeronaves maiores e mais pesadas, maior terá de ser o comprimento da pista e a velocidade necessária para a decolagem, dado o maior esforço necessário. A pista também atende ao propósito inverso: permite que a aeronave toque o solo em alta velocidade e tenha espaço para frenar com segurança, transitando suavemente entre veículo aéreo para terrestre novamente.

Nenhum comentário:

Postar um comentário